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Abstract. We investigate theQ-state two-dimensional Potts model. The anisotropic interfacial
tension is related by duality to the anisotropic correlation length. ForQ > 4 we calculate
exactly the anisotropic correlation length at the first-order transition point. From the calculated
anisotropic correlation length, the equilibrium crystal shape (ECS) is derived via the Wulff
construction. The ECS is expressed by means of a simple algebraic curve. RegardingQ as a
temperature scale, we show that the Potts model has the same ECS as the eight-vertex model.
We discuss a connection between the ECS and theq-deformed pseudo-Euclidian algebra.

1. Introduction

Thermal evolution of the equilibrium crystal shape (ECS) has attracted much attention in
relation to the roughening transition phenomena [1–16]. Theoretically, if the interfacial
tension is known with its full directional dependence (or anisotropy), we can determine
the ECS via the Wulff construction [1–4]. The problem reduces to the calculation of the
anisotropic interfacial tension. Finding reliable values of the interfacial tension for all
directions is still very difficult in most cases. The first exact analysis of the ECS was done
for the square-lattice (nearest-neighbour) Ising model [7–9] (see also [10–13]). For the
square-lattice Ising model some authors [17–19] have proven that the anisotropic interfacial
tension is related by duality [20–23] to the anisotropic correlation length. The anisotropic
correlation length has been calculated by the Pfaffian method [24, 25]. From these results
the ECS was derived with the help of the Wulff construction.

In a previous paper [26] we calculated the anisotropic interfacial tension of the eight-
vertex model by a new method [27, 28] which introduces the shift operator into the standard
transfer matrix argument. From the calculated anisotropic interfacial tension, we obtained
the ECS via the Wulff construction. The ECS of the eight-vertex model is represented as a
simple algebraic curve

α2β2+ 1+ A3(α
2+ β2)+ A4αβ = 0 (1.1a)

where

α = exp(−3X/kBT ), β = exp(−3Y/kBT ) (1.1b)

with a scale factor3 and the position vector(X, Y ) of a point on the ECS. The eight-vertex
model reduces to the square-lattice Ising model and the six-vertex model in special limits
with respect to a parameterq [29]. Showing that the coefficientsA3 andA4 are independent
of q, we extended the fact that the ECSs of the Ising model and the six-vertex model are
essentially the same [5–9, 13].
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Equation (1.1a) is a symmetric biquadratic relation betweenα andβ. The symmetric
biquadratic relation is naturally parametrized in terms of the Jacobian elliptic functions (see
[29, chapter 15]). In the analysis of the eight-vertex model [26] we showed that an elliptic
function p(v) in the expression of the interfacial tension corresponds to the sn function
in this parametrization. Thus,p(v) in the expression of the interfacial tension reflects
the ECS (1.1). Besides the eight-vertex model, the interfacial tension of several solvable
models was calculated along a special direction [30–32]. We note that elliptic functions in
the expressions of the interfacial tension of these solvable models are (essentially) the sn
function. It is suggested that their ECSs are also the symmetric biquadratic relation (1.1).
For hard squares with diagonal attractions this fact was proven by direct calculations [33].
We expect that (1.1) is a universal shape which appears as the ECSs of a wide class of
models. Further study of (1.1) is desirable.

Here, we consider theQ-state Potts model [29, 34–35]. Consider a square lattice. A
spin variableσjk, which takes values in the groupZQ = {0, 1, . . . ,Q−1} with the addition
modQ as a group law, is associated with each site(j, k). The Hamiltonian of the Potts
model is defined by

E = −J1

∑
j,k

δ(σj,k+1− σjk)− J2

∑
j,k

δ(σj+1,k − σjk) (1.2)

where nearest-neighbour spins are coupled byJ1 if they are horizontal neighbours, byJ2 if
they are vertical neighbours, and

δ(σ − σ ′) =
{

1 if σ − σ ′ = 0

0 if σ − σ ′ 6= 0.
(1.3)

We assume thatJ1, J2 > 0. The partition function is given by

Z =
∑
σ

exp

[
K1

∑
j,k

δ(σj,k+1− σjk)+K2

∑
j,k

δ(σj+1,k − σjk)
]

(1.4)

where the outer sum is over all the spin configurations and

K1 = J1/kBT K2 = J2/kBT . (1.5)

For later convenience we rewrite (1.4) as

Z =
∑
σ

∏
j,k

V1(σj,k+1− σjk)V2(σj+1,k − σjk) (1.6)

with

V1(x) =(eK1 − 1)δ(x)+ 1

V2(y) =(eK2 − 1)δ(y)+ 1.
(1.7)

TheQ = 2 Potts model is equivalent to the Ising model. For generalQ it is known
that the Potts model is solvable at the phase transition point [29, 36]. WhenQ > 4, the
phase transition is first order. Along the horizontal direction, Laanait [39] showed that the
interfacial tension is related by duality to the correlation length. At the first-order transition
point the correlation length was calculated along special directions [37–38]. It is noted
that the correlation length is expressed in terms of the sn function there. In this paper, we
calculate the exact ECS of the Potts model forQ > 4 at the first-order transition point. We
examine connections between the ECS of the Potts model and the algebraic curve (1.1).

The format of the present paper is as follows. In section 2, using duality transformations,
we derive a relation between the anisotropic interfacial tension and the anisotropic
correlation length. In section 3 we consider the caseQ > 4. The anisotropic correlation
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length is calculated exactly at the first-order transition point. From the calculated anisotropic
correlation length, the ECS is found via the Wulff construction. In section 4 we discuss
the energy–momentum excitations of a spin chain which is associated with the Potts model.
Section 5 is devoted to a summary and discussion.

2. Duality of interfacial tension and correlation length

For theQ-state Potts model we derive a relation between the anisotropic interfacial tension
and the anisotropic correlation length. The phase transition point of the Potts model occurs
when

x1x2 = 1 (2.1)

with

xj = Q−1/2(eKj − 1) j = 1, 2 (2.2)

(see [29, chapter 12]). We start by assuming that the system is in the ferromagnetic ordered
state: x1x2 > 1. Consider a square lattice31 of 2N + 2 columns and 2M + 2 rows
(M � N � 1) (figure 1). We impose on it two types of boundary conditions:

(a) The upper boundary spins are fixed to beQ0, and the lower boundary spins
Q1(6= Q0); on the left boundaryσj,−N = Q1 if j 6 −L, and σj,−N = Q0 otherwise;
on the right boundaryσj,N+1 = Q1 if j 6 L, andσj,N+1 = Q0 otherwise.

(b) All the boundary spins are fixed to beQ0.

Figure 1. The square lattice,31, is shown by full lines. The boundary conditions (a) are
imposed on it: the boundary spins denoted by open circles (respectively full circles) are fixed
to beQ0 (respectivelyQ1). Broken lines represent the dual lattice3∗1.
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We denote byγ the interfacial tension between two ordered phases. The interfacial
tensionγ along the direction designated byL/N = −1/ tanθ (0< θ < π) is defined by

−γ (θ)/kBT = lim
L,M,N→∞

(2N)−1 sinθ lnZa
31
/Zb

31
(2.3)

whereZa
31

(respectivelyZb
31

) is the partition function of the system with the boundary
conditions (a) (respectively (b)); the limit is taken with the ratioL/N fixed and under the
conditionM � N .

In the case of isotropic interactionsK1 = K2 and along the horizontal directionθ = π/2
Laanait [39] showed thatγ is related to the correlation lengthξ∗ at the dual temperature. The
argument is extended into general cases of anisotropic interactions and general directions.
We define the dual model as follows. A spin variableσ̂jk ∈ ZQ is placed on each site(j, k)
of the dual lattice3∗1; the site(j, k) of 3∗1 is connected with the site(j, k) of 31 by shifting
in both directions by a half-lattice spacing (figure 1). The interaction constantsK∗1 andK∗2
on3∗1 are given by

eK
∗
1 − 1= Q/(eK2 − 1) eK

∗
2 − 1= Q/(eK1 − 1). (2.4)

(Note that (2.1) corresponds to the self-dual condition.)
To relate calculations of the dual model to those of the original model, we introduce

the transformation

V̂1(x̂) =
Q−1∑
y=0

V2(y)e
−2π iyx̂/Q = (eK2 − 1)[(eK

∗
1 − 1)δ(x̂)+ 1]

V̂2(ŷ) =
Q−1∑
x=0

V1(x)e
2π ixŷ/Q = (eK1 − 1)[(eK

∗
2 − 1)δ(ŷ)+ 1]

(2.5)

(see, for example, [23, 35].) The inverse transformation gives

V1(σj,k+1− σjk) = Q−1
Q−1∑
1
(2)
jk =0

V̂2(1
(2)
jk ) exp

[
2π i

Q
(σj,k+1− σjk)1(2)

jk

]

V2(σj+1,k − σjk) = Q−1
Q−1∑
1
(1)
jk =0

V̂1(1
(1)
jk ) exp

[
−2π i

Q
(σj+1,k − σjk)1(1)

jk

]
.

(2.6)

Using (2.6) in (1.6), we obtain

Zb
31
= Q−(4MN+2M+2N)

′∑
1

∏
j,k

V̂1(1
(1)
jk )V̂2(1

(2)
jk ) (2.7)

where the summation is over configurations of1 which satisfy the condition

1
(1)
jk −1(2)

jk −1(1)
j−1,k +1(2)

j,k−1 ≡ 0 (modQ) (2.8)

for −M + 16 j 6 M and−N + 16 k 6 N .
The configurations of1 are connected with those ofσ̂ by

1
(1)
jk ≡ σ̂jk − σ̂j,k−1 (modQ)

1
(2)
jk ≡ σ̂jk − σ̂j−1,k (modQ).

(2.9)

Then, (2.8) is satisfied automatically. It follows that

Zb
31
= Q−(2M+1)(2N+1)(eK1 − 1)2M(2N+1)(eK2 − 1)(2M+1)2NZf

3∗1
(2.10)
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where Zf
3∗1

is the partition function of the dual model with free boundary conditions.
Similarly, we find that

Za
31
= Q−(2M+1)(2N+1)(eK1 − 1)2M(2N+1)(eK2 − 1)(2M+1)2NZf

3∗1

×〈[Qδ(σ̂−L,−N − σ̂LN)− 1]/(Q− 1)〉f3∗1 (2.11)

where〈·〉 denotes the expectation value. From (2.10) and (2.11), it follows that

Za
31
/Zb

31
= 〈[Qδ(σ̂−L,−N − σ̂LN)− 1]/(Q− 1)〉f3∗1. (2.12)

In the infinite volume limit3∗1 → Z2 we define the correlation lengthξ ∗ along the
directionθ by

−1/ξ ∗ = lim
r→∞ r

−1 ln〈[Qδ(σ̂−l,−n − σ̂ln)− 1]/(Q− 1)〉Z2 (2.13)

where r = 2(l2 + n2)1/2 and the limit r → ∞ is taken with the ratiol/n(= −1/ tanθ)
fixed. SetL = (2k + 1)l andN = (2k + 1)n in (2.12). Lemma 2.1 (a) of [39] shows that

1

(2k + 1)r
lnZa

31
/Zb

31
= 1

(2k + 1)r
ln〈[Qδ(σ̂−L,−N − σ̂LN)− 1]/(Q− 1)〉f3∗1

> 1

(2k + 1)r

k∑
j=−k

ln〈[Qδ(σ̂(2j−1)l,(2j−1)n − σ̂(2j+1)l,(2j+1)n)− 1]/(Q− 1)〉f3∗1.

(2.14)

Take theM, k → ∞ limit with l andn fixed to be constants. On the r.h.s. of (2.14) we
repeat the same argument used in the proof of Theorem 2 (i) of [40]. It is found that

−γ /kBT > r−1 ln〈[Qδ(σ̂−l,−n − σ̂ln)− 1]/(Q− 1)〉Z2 (2.15)

whereγ is the interfacial tension along the direction designated by the ratiol/n. We take
the r →∞ limit with the ratio l/n fixed on the r.h.s. of (2.15). It follows that

γ /kBT 6 1/ξ∗. (2.16)

For fixedL andN the expectation value on the r.h.s. of (2.12) is monotone increasing
in 3∗1, which is a consequence of Ginibre inequalities [41] (see also [42]). The monotonicity
shows that

R−1 lnZa
31
/Zb

31
6 R−1 ln〈[Qδ(σ̂−L,−N − σ̂LN)− 1]/(Q− 1)〉Z2 (2.17)

with R = 2(L2 + N2)1/2. TakingL,M,N →∞ limit with the ratioL/N fixed gives the
converse inequality of (2.16). Thus, we obtain

γ /kBT = 1/ξ ∗ (2.18)

for all θ [7–9, 19].

3. Equilibrium crystal shape

In this section we consider the caseQ > 4, where the Potts model has a first-order phase
transition [29, 36]. The exact ECS is calculated at the first-order transition point. Klümper
et al [37] (KSZ) obtained the correlation length along the diagonal direction there. When
the interactions are isotropic, Buffenoir and Wallon [38] calculated it along the vertical
direction. In subsection 3.1, using the shift operator, we extend the analysis by KSZ to find
the anisotropic correlation length. In subsection 3.2 the ECS is derived from the anisotropic
correlation length with the help of the relation (2.18) and the Wulff construction.
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Figure 2. (a) The Boltzmann weights,W , around a face. The two-spin interactions,K1 and
K2, are represented by a broken line and a chain line, respectively, and the four-spin interaction,
K3, by full lines. (b) In the decoupling limitab = cd (or K3 = 0) the IRF model factors into
two independent Potts models, which are shown by open circles and full circles.

3.1. Anisotropic correlation length

KSZ investigated a square-lattice model with interactions round faces (IRF) [29]. The IRF
model is defined as follows. We locate a spin variableαj ∈ ZQ at each sitej of a square
lattice. The Boltzmann weight is assigned on each face depending on spin configurations
around it. When spins around a face areα, β, µ, andν counterclockwise starting from the
southwest corner (figure 2(a)), the Boltzmann weight around it is

W(α, β|µ, ν) = exp[−ε(α, β|µ, ν)/kBT ] (3.1)

with

−ε(α, β|µ, ν)/kBT = K0+K1δ(α − µ)+K2δ(β − ν)
+K3{δ(α − µ)δ(β − ν)+ [1− δ(α − µ)][1 − δ(β − ν)]}. (3.2)

There are four different Boltzmann weights:

a = W(α, β|α, β) = eK0+K1+K2+K3

b = W(α, β|ᾱ, β̄) = eK0+K3

c = W(α, β|α, β̄) = eK0+K1

d = W(α, β|ᾱ, β) = eK0+K2

(3.3)

whereᾱ is one of theQ− 1 values which differ fromα. WhenQ = 2, the IRF model is
equivalent to the eight-vertex model. Using inversion relations, and borrowing arguments
from the analyses of the eight-vertex model, KSZ determined the phase transition point for
generalQ. In the ab = cd (or K3 = 0) limit the IRF model factors into two independent
Potts models (figure 2(b)). ForQ > 4 KSZ calculated the correlation length of the Potts
model along the diagonal direction at the self-dual (or first-order transition) point. We
extend the calculation by KSZ to find the anisotropic correlation length of the Potts model.

Hereafter, analyses are restricted to the decoupling limitab = cd. Moreover, we assume
that Q > 4, and that the system is at the first-order transition point. At the first-order
transition point the four Boltzmann weights in (3.3) are parametrized as

eK0 = b = sinh(λ/2+ u) sinh(λ/2− u)
eK1 = a/d = sinh(3λ/2− u)/ sinh(λ/2+ u)
eK2 = a/c = sinh(3λ/2+ u)/ sinh(λ/2− u)

(3.4)

with

2 coshλ =
√
Q λ > 0 (3.5)
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Figure 3. The one-parameter family of commuting transfer matrices.

and

−λ/2< u < λ/2. (3.6)

We suppose a square lattice32 of N columns andM rows with periodic boundary
conditions in both directions (M, N even). Let α = {α1, α2, . . . , αN } and β =
{β1, β2, . . . , βN } be the spin configurations on two successive rows. A one-parameter family
of row-to-row transfer matrices is defined by

[V(u)]α,β = [sinh(λ) sinh(2λ)]−N
N∏
j=1

W(αj , αj+1|βj+1, βj |u) (3.7)

whereαN+1 = α1 andβN+1 = β1 (figure 3). The Boltzmann weightsW satisfy the standard
initial condition [29, 43–44]

W(α, β|µ, ν| − λ/2) = sinh(λ) sinh(2λ)δ(α − µ). (3.8)

Because of the periodic boundary conditions, (3.8) implies thatV(u) reduces to the shift
operator in theu = −λ/2 limit. The Boltzmann weightsW also satisfy the Yang–Baxter
relation [29, 43–44]

Q−1∑
ν=0

W(α, β ′|ν, γ ′|u)W(γ ′, ν|α′, β|u′)W(ν, β ′|γ, β ′|u′′)

=
Q−1∑
ν=0

W(γ ′, α|ν, β|u′′)W(α, β ′|γ, ν|u′)W(ν, γ |α′, β|u) (3.9)

for all α, α′, β, β ′, γ, γ ′ ∈ ZQ with u′ = u + u′′ + λ/2. The Yang–Baxter relation (3.9)
shows that, for all complex numbersu andu′, V(u) and V(u′) commute with each other;
thereforeV(u) and V(u′) can be diagonalized simultaneously. We denote the eigenvalues
of V(u) by V (u).

We can prove that the eigenvalueV (u) satisfies the inversion relation

V (u)V (u+ λ) =
[

sinh(λ+ u) sinh(λ− u)
sinh2(λ)

]2N

+O(e−εN ) (3.10)

for largeN with ε > 0 (see also [45, 46].) Using the inversion relation (3.10), and assuming
some analytic properties of the eigenvaluesV (u), we can determine their asymptotic forms
asN →∞. For convenience we introduce a limiting function by

L(u) = lim
N→∞

V (u)/V0(u) (3.11)

whereV0(u) is the largest eigenvalue in the regime (3.5), (3.6). KSZ obtained for the
next-largest eigenvalues

L1(u) = ksnh[2K(u−21)/π ]snh[2K(u−22)/π ] (3.12)



3786 M Fujimoto

with imaginary free parameters21, 22; the snh function is given by

snh(v) = −i sn(iv) (3.13)

where sn is the Jacobian sn function to the modulusk which is defined by requiring that
the corresponding quarter periodsK, K ′ satisfy

K ′/K = 2λ/π (3.14)

(see appendix A of KSZ).
We denote byG(m, n) the correlation between the sites(0, 0) and(m, n) in the32→ Z2

limit:

G(m, n) = 〈[Qδ(α00− αmn)− 1]/(Q− 1)〉pZ2. (3.15)

The correlation lengthξ of the Potts model is defined by

−1/ξ = lim
r→∞ r

−1 ln[G(m, n)−G∞] G∞ = lim
r→∞G(m, n) (3.16)

wherer = (m2 + n2)1/2/
√

2 and the limit is taken with the ration/m = − tan(θ + π/4)
(π/4 < θ < 5π/4) fixed and under the condition thatm + n is even; note that, in the
decoupling limit,G(m, n) = 0 if m+ n is odd (figure 2(b)).

KSZ investigatedξ along the diagonal directionθ = 3π/4 as follows. In the standard
transfer matrix method the correlation between the sites(0, 0) and(m, n) is represented as

〈[Qδ(α00− αmn)− 1]/(Q− 1)〉p32
= Tr[A0Vm(u)A∗nV

M−m(u)]
Tr[VM(u)]

(3.17)

whereAj (j = 0, 1, . . . ,M − 1) is a diagonal matrix given by

[Aj ]α,β =
{

exp(−2παj/Q) if α = β
0 otherwise

(3.18)

andA∗j is the complex conjugate ofAj . Apply a similarity transformation which diagonalizes
V(u). We take theM → ∞ limit firstly, and thenN → ∞ limit. In the M → ∞ limit,
we find that

〈[Qδ(α00− αmn)− 1]/(Q− 1)〉p32
=
∑
p

[Ã0]0,p[Ã∗n]p,0

[
Vp(u)

V0(u)

]m
(3.19)

whereVp(u) is the p-th eigenvalue ofV(u) in decreasing order of magnitude andÃj is
the matrix transformed fromAj . Equation (3.19) shows that, whenn = 0 andm becomes
large, the correlation lengthξ along the diagonal direction can be calculated from the ratios
between the largest eigenvalueV0(u) and the next-largest eigenvalues. In theN →∞ limit
these ratios are given by the limiting function in (3.12). Because of a continuous distribution
of the next-largest eigenvalues, the summation on the r.h.s. of (3.19) is converted into an
integral over the imaginary parameters21 and22. Estimating the integral by the method
of steepest descent, KSZ obtainedξ along the diagonal direction.

To find the anisotropy ofξ , we consider them → ∞ limit with the ratio n/m fixed.
In this limit contribution from the matrix elements [Ã∗n]p,0 is important as well as the ratios
between the eigenvalues on the r.h.s. of (3.19). Calculating the matrix elements is a very
complicated problem, however. To overcome the difficulty, we introduce the shift operator
V(−λ/2) [27, 28]. The shift operator connectsA∗n with A∗0 by

A∗n = V(−λ/2)−nA∗0V(−λ/2)n. (3.20)
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Substituting (3.20) into (3.17) gives

〈[Qδ(α00− αmn)− 1]/(Q− 1)〉p32
=
∑
p

[Ã0]0,p[Ã∗0]p,0

[
Vp(u)

V0(u)

(
Vp(−λ/2)
V0(−λ/2)

)η]m
(3.21)

where η = −n/m = tan(θ + π/4). Equation (3.21) implies thatξ along the direction
designated byη can be found from the eigenvalues of the transfer matrix and those of the
shift operator without calculating the matrix elements [Ã∗n]p,0.

Using (3.12) in (3.21), we get

G(m, n)−G∞ ∼
∫ 2π i

0
d21

∫ 2π i

0
d22 ρ(21,22)

×{ksnh[2K(u−21)/π ]snh[2K(u−22)/π ]

×{ksnh[2K(−λ/2−21)/π ]snh[2K(−λ/2−22)/π ]}η}m (3.22)

whereρ(21,22) is to be determined from the distribution of the eigenvalues and the matrix
elements [̃A0]0,p, [Ã∗0]p,0. Its explicit form is not important. It is sufficient to assume its
analyticity. Deforming the integration paths suitably, we integrate (3.22) by the method of
steepest descent. It follows that

1/ξ = 2
√

2 cos
(
θ + π

4

)
ln

∣∣∣∣k1/2snh

[
2K

π
(u−2s)

]∣∣∣∣
+2
√

2 sin
(
θ + π

4

)
ln

∣∣∣∣k1/2snh

[
2K

π

(
−λ

2
−2s

)]∣∣∣∣ (3.23)

where the saddle point2s is determined as a function ofθ by

d

d2
ln k1/2snh

[
2K

π
(u−2)

]
+ tan

(
θ + π

4

) d

d2
ln k1/2snh

[
2K

π

(
−λ

2
−2

)]
= 0 2 = 2s (3.24)

with the condition

2s = (π/2)i + u θ = 3π/4 (3.25)

(see figure 4).
When u = 0, the interactions are isotropic. In this case (3.23)–(3.25) withθ = π/2

reproduce the result by Buffenoir and Wallon [38]. At the first-order transition point, it
is expected that the correlation length of the disordered phase is different from that of the
ordered phase. Comparing their result with numerical calculations in [47, 48], Buffenoir
and Wallon suggested that the correlation lengthξd of the disordered phase is twice as large
as the correlation lengthξo of the ordered phase:

ξd = 2ξo (3.26)

for u = 0 andθ = π/2. The correlation length calculated in this subsection corresponds to
ξd of the disordered phase (see also [49]).

3.2. Anisotropic interfacial tension and equilibrium crystal shape

We draw the ECS of the Potts model in theX–Y plane. At the first-order transition point
two types of interfacial tension are possible: the interfacial tensionγoo between two ordered
phases and the interfacial tensionγdo between the disordered phase and an ordered phase
[33, 49]. Here, we suppose that a droplet of an ordered phase whose volume (or area) is
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Figure 4. Due to a continuous distribution of the next-largest eigenvalues, the summation
in (3.21) is converted into an integral over the imaginary parameters21 and22. Whenm
becomes large with the ration/m fixed, the integral is estimated by the method of steepest
descent. For each parameter there are two saddle points2s and2s + π i. The contributions
from the two saddle points differ only by a phase factor(−1)m+n. As θ varies,2s moves on
the line Im(2) = π/2.

fixed is embedded inside a sea of another ordered phase. The ECS is defined as the shape
of the minimum interface free energy. From the anisotropic interfacial tensionγoo of the
order–order interface, the ECS is derived by the use of the Wulff construction [1–4]

3X = cosθγoo− sinθ(dγoo/dθ) (3.27a)

3Y = sinθγoo+ cosθ(dγoo/dθ) (3.27b)

where3 is a scale factor adjusted to yield the volume of the crystal.
At the first-order transition point (2.18) becomes

γoo/kBT = 1/ξd. (3.28)

The anisotropic correlation lengthξd calculated in 3.1 gives the anisotropic interfacial tension
γoo via the relation (3.28). Using (3.23)–(3.25), and choosing the scale factor3 suitably,
we obtain

3(X − Y )/kBT = ln

∣∣∣∣k1/2snh

[
2K

π
(u−2s)

]∣∣∣∣ (3.29a)

3(X + Y )/kBT = ln

∣∣∣∣k1/2snh

[
2K

π

(
−λ

2
−2s

)]∣∣∣∣ . (3.29b)

As 2s moves from−λ+ (π/2)i to λ+ (π/2)i on the line Im(2s) = π/2 (figure 4),(X, Y )
sweeps out the ECS. The ECSs forK1/K2 = 1 and 1.6 are shown in figure 5.

We can rewrite (3.29) into the symmetric biquadratic relation (1.1) withα andβ replaced
by

α = exp[−3(X + Y )/kBT ] β = exp[−3(X − Y )/kBT ]. (3.30)

The coefficientsA3 andA4 are given by

A3 = 1

ksnh2[2K(u+ λ/2)/π ]
(3.31a)
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Figure 5. The ECSs of the Potts model at the first-order transition point. (a) The interactions
are isotropic (orK1 = K2), and (b) K1/K2 = 1.6. From the outermost figure,Q = 108, 107,
106, 105, 104, 2000, 600, 200, 60, successively. Each figure is suitably scaled.

A4 = −2cnh[2K(u+ λ/2)/π ]dnh[2K(u+ λ/2)/π ]

ksnh2[2K(u+ λ/2)/π ]
(3.31b)

where the snh function is defined by (3.13) and

cnh(v) = cn(iv) dnh(v) = dn(iv). (3.32)

Compare (3.29)–(3.31) with (4.20)–(4.23) of [26]. If the coordinate axes are rotated
throughπ/4, the ECS derived here is identical to that of the eight-vertex model with

λ(8v) = λ u
(8v)
0 /2= u I (8v) = π/2 (3.33)

where the variablesλ(8v), u(8v)
0 , and I (8v) of the eight-vertex model are defined by (2.1),

(2.2) of [26]. Note that, whenI (8v) = π/2, the eight-vertex model reduces to the six-vertex
model. The results in sections 3.1 and 3.2 are consistent with the equivalence between
the eigenvalue spectra of the transfer matrices of the Potts model and the six-vertex model
shown in [38].

4. Associated spin chain andEq(1, 1) algebra

Generally, for a two-dimensional classical system, we can define a one-dimensional quantum
Hamiltonian which is related to the transfer matrix of the classical system [29, 43]. KSZ
considered a quantum spin chain associated with the IRF model in section 3.1 (see
[37, appendix B]). Analyses of the quantum spin chain give some useful insights for
understanding physical meanings of the algebraic curve (1.1). In this section we investigate
a connection between the algebraic curve (1.1) and the energy–momentum excitations of
the spin chain.

KSZ defined the HamiltonianH of the spin chain by

V(u)/V(−λ/2) ∼ I− (u+ λ/2)H+ · · · u ∼ −λ/2 (4.1)

where I is the identity operator. By the use of the limiting functionL(u) introduced by
(3.11), the energy-momentum excitations are represented as

E − E0 = −(lnL)′(−λ/2) =
∑
j

εj (4.2a)

P − P0 = −i ln L(−λ/2) =
∑
j

pj . (4.2b)
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It is noted that all the excitations are given by superpositions of free states;εj andpj are
the energy and the momentum of a free particle, respectively.

The ECS (1.1) is connected with the dispersion relation for free particles. Using (3.31)
in (1.1a), we find that

(αβ + α−1β−1)ksnh2[2K(u+ λ/2)/π ] + (αβ−1+ α−1β)

−2cnh[2K(u+ λ/2)/π ]dnh[2K(u+ λ/2)/π ] = 0. (4.3)

To relateα andβ to ε andp, substitute (3.29) into (3.30) and replace the saddle point2s

by an imaginary parameter2. It follows that

α−1 = (−k)1/2snh

[
2K

π

(
−λ

2
−2

)]
(4.4a)

β−1 = (−k)1/2snh

[
2K

π
(u−2)

]
. (4.4b)

We expandβ around the pointu = −λ/2 to obtain

αβ−1 ∼ 1− (u+ λ/2)ε + · · · αβ ∼ e2ip + · · · . (4.5)

Similarly, the elliptic functions in (4.3) are expanded around the pointu = −λ/2. From the
coefficients of(u+λ/2)2 in the expansion, we find the dispersion relation for free particles

ε2 = (2K/π)2[(1− k)2+ 4k sin2p]. (4.6)

In the k→ 1 limit and for distances much larger than some microscopic length scalea

(e.g. the lattice spacing), the spin chain should be equivalent to a relativistic field theory.
To see this, we renormalizeε andp as

ε̄ = πε/2aKk1/2 p̄ = 2p/a. (4.7)

Substitute (4.7) into (4.6) and take thek → 1 anda → 0 limit with the ratio (1− k)/a
fixed. It follows that

ε̄2 = M2+ p̄2 (4.8)

where the mass termM is defined by

(1− k)/a = M (4.9)

(see also [50]). The system is invariant under the transformations of the(1+ 1) pseudo-
Euclidian group. Because the pseudo-Euclidian group includes two translations and one
boost, it is a three-parameter group. We denote the generators of the translations byP0 and
P, and the generator of the boost byJ. Relations among the generators are given by

[P0,P] = 0 [J,P0] = iP [J,P] = iP0. (4.10)

The mass squaredP2
0−P2 is the Casimir operator. Equation (4.8) is regarded as a realization

of the Casimir invariant in the momentum representation.
Recently, Bonechiet al [51] proposed theq-deformed pseudo-Euclidian algebra

Eq(1, 1) as a symmetry of discrete systems. They considered the kinematical symmetry of
phonon propagation in harmonic crystals by interpreting the lattice spacing as a deformation
parameter:q = eia. We note thatP is determined up to an integer multiple of 2π/a. Instead
of P, K(= eiaP) appears as an element of algebra. The defining relations ofEq(1, 1) are

KP0K−1 = P0 KJK −1 = J + aP0

KK−1 = I [J,P0] = (K − K−1)/2a.
(4.11)
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The Casimir operator is deformed into

P2
0− (2/a)2 sin2(aP/2). (4.12)

The argument by Bonechiet al [51] is applicable to excitations of the spin chain defined
by (4.1). In the momentum representation

J = iε̄∂p̄ + 1

2a
(eiap̄ − e−iap̄)∂ε̄

= iε̄∂p̄ + 1

2a
(K̄ − K̄−1)∂ε̄ (4.13)

whereε̄ (respectivelyp̄, K̄) is the eigenvalue ofP0 (respectivelyP, K). We can regard (4.6)
with (4.7) as a realization of the deformed Casimir operator (4.12). The parametrization
in terms of the Jacobian elliptic functions plays an essential role here. Using the elliptic
parametrization, we obtain

ε̄ = − cnhdnh

ak1/2snh

[
2K

π

(
−λ

2
−2

)]
(4.14a)

K̄−1 = e−iap̄ = −ksnh2

[
2K

π

(
−λ

2
−2

)]
(4.14b)

J = π

4Kk1/2
∂2. (4.14c)

Eliminating 2 in (4.14a) and (4.14b) derives the Casimir invariant (4.12). Thus, in the
special limit, the algebraic curve (1.1) is closely connected with the symmetry of the spin
chain.

5. Summary and discussion

In this paper the exact ECS of the Potts model was calculated forQ > 4 at the first-order
transition point. In section 2 we considered duality transformations which connect the
high-temperature disordered phase with low-temperature ordered phases. For generalQ we
proved a simple thermodynamic relation between the anisotropic correlation lengthξd of
the disordered phase and the anisotropic interfacial tensionγoo of the order–order interface.
In section 3 analyses were restricted to the caseQ > 4, where the Potts model has a first-
order transition point. We calculated the anisotropic correlation lengthξd at the first-order
transition point. Then, fromξd, the ECS was found with the help of the thermodynamic
relation and the Wulff construction. The ECS was represented in terms of the algebraic
curve (1.1). RegardingQ as a temperature scale, we showed that the Potts model has the
same ECS as the eight-vertex model.

In section 4 we discussed a relation between the algebraic curve (1.1) and the energy–
momentum excitations of a spin chain which is associated with the Potts model. We found
that (1.1) reflects the symmetry of the spin chain (or theEq(1, 1) algebra) in a special
limit. There, all the excitations are represented as superpositions of free particles. In the
analyses of theXYZ spin chain bound states appear besides free states; see [50, 52, 53].
We can show that the energy–momentum excitations of a bound state is connected with
the coproducts of theEq(1, 1) algebra. From (4.1) and the parametrization in terms of the
Jacobian elliptic functions, it is suggested that (1.1) is related to a symmetry of systems
which are discretized in both directions. Detailed investigations about these problems will
be reported separately.
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In the calculation ofξd, we estimated an integral over the band of next-largest
eigenvalues by the method of steepest descent. Note that in this calculation the periodicity of
L(u) played important roles: the periodicity of the snh function inL(u) along the imaginary
axis allowed us to deform the integration paths suitably; we found that, asθ varies from 0 to
2π , the saddle point2s moves on the line Im(2s) = π/2 by 2λ; thus, the periodicity along
the real axis is needed to determineξd uniquely for all directions (figure 4). We discuss the
anisotropic correlation lengthξd at T = Tf + ε; Tf is the first-order transition temperature
and ε(> 0) is an infinitesimal parameter. We cannot define commuting transfer matrices
there. The limiting functions for the transfer matrix and the shift operator are denoted byLt

andLs, respectively. The continuity ofξd aroundT = Tf suggests thatξd is still determined
by integratingLt andLs in a similar way to the calculation atT = Tf . This fact implies that
Lt andLs are represented by the use of doubly periodic functions. Combining the relation
to the dispersion curve (4.6) for free particles, we expect that, forT > Tf , Lt andLs will
also be written in the form of (3.12), which means thatξd will be represented by the use of
an algebraic curve similar to (1.1). To clarify this point, numerical calculations are now in
progress.
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